
The influence of oscillations on natural 
convection in ship tanks 
S. Doer f fer  and J. Mik ie lewicz*  

The influence of low-frequency harmonic oscillations on the natural convection 
occurring at vertical walls of a ship tank has been investigated. The velocity field 
outside the boundary layer of the liquid in the tank has been determined by the use 
of potential f low theory. Two analytical models of heat transfer have been solved. 
The first of them is based on the method of small perturbations; while, in the second 
model, averaging of conservation equations is adopted. The models are valid for a 
laminar boundary layer. The results obtained agree well with experimental results 
obtained elsewhere 1 . Comparison has also been made, on the assumption that the 
laminar sublayer determines the heat transfer, with results of experimental 
investigations carried out by the authors for the turbulent f low range. 
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The design of heating systems mounted in a tank is based 
on knowledge of the principles of heat transfer between 
the liquid in the tank and the environment. For thermal 
calculations concerning a tank at rest, the commonly 
known principles of natural convection are adopted. No 
satisfactory methods have been found, however, for 
calculation of heat transfer in a tank subjected to 
oscillations. Holds of conventional tankers or oil bulk ore 
(obo) ships carrying crude oil or its products provide an 
example of such a type of tank. 

In general, heat transfer in the holds of 
conventional tankers is laminar in nature. In such a case, 
calculations can be performed using the results of 
experimental investigations ~'2. Until now, these have 
been the only investigations known to have dealt with the 
effect of ship rolling on the heat transfer between the walls 
of the tank and the fluid. 

Unlike conventional tankers, new types of vessels, 
eg obo ships, have much larger holds with smooth walls or 
transverse framing. In such tanks, convection of decidedly 
turbulent nature occurs. Total lack of methods for 
calculating the heat transfer in the turbulent range during 
oscillations has been the reason for experimental 
investigations by one of the present authors 3. Detailed 
knowledge of the problem is important since economic 
reasons necessitate precise design of heating systems that 
are to be installed on ships. 

The general problem of heat transfer under 
conditions of stationary, turbulent natural convection 
superimposed by nonstationary inputs from the outside 
flow has yet to be solved analytically 4. Also, no solutions 
have been available for a similar class of mixed convection 
problems where the outside flow is stationary 5. On the 
other hand, there exist theoretical papers dealing with the 
influence of harmonic oscillations on the laminar 
boundary layer developing at a flat plate or cylinder 6 ~2. 
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Small oscillations are considered there, and solutions are 
most often limited to the first two approximations. The 
first one gives a solution for the stationary flow, ie for 
natural convection, while the second approximation 
consists of pulsatory components of hydromechanical 
and thermal quantities developed as a result of 
oscillations. 

The lack of analytical methods for describing the 
heat transfer under conditions of the particular oscillatory 
flow which occurs at the walls of a ship tank, for the 
laminar as well as turbulent flow, has prompted the 
present authors to carry out their investigations. 

Two theoretical models of heat transfer were 
developed, which allow determination of the pulsatory 
components of hydromechanical and thermal quantities 
as well as the influence of oscillations on the time- 
averaged heat transfer. The models were constructed for a 
laminar boundary layer; however, they can also be used 
for analysis of a turbulent boundary layer on the 
assumption that the laminar sublayer which is always 
present within a turbulent layer is mainly responsible for 
the thermal resistance. The analysis was carried out, 
without affecting the general character of the method, for 
a vertical wall of the tank, which is in the largest part 
responsible for the exchange of heat with the 
environmentZ,2,13-16. 

One type of forced motion of the tank was 
adopted: the harmonic rotation corresponding to the 
rolling of a ship. For  fully loaded tankers, amplitudes of 
rolling are equal to several degrees, their period ranging 
from 5 s to 25 s. The rolling results in flow which is most 
intensive along the ship sides and the tank bottom 17'~a. 
To solve the models describing the heat transfer, 
knowledge of this flow is necessary. 

Velocity field of liquid in a tank 

The velocity field of liquid in an oscillating tank, and thus 
the velocity of washing its walls, were determined by the 
use of the theory of potential flow. The thickness of the 
boundary layer developing in the tank was estimated on 
the basis of the ship rolling parameters, tank size in the 
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range 10 m ~< 2b ~< 40 m (Fig 1), and the viscosity of liquids 
carried and heated inside the tank, v=(100-1500) 
x 10-6 m2/s. The results--the boundary layer thickness 
smaller by at least two orders of magnitude than the tank 
size--allowed us, following the Prandtl hypothesis 19, to 
apply the model of nonviscous fluid outside this layer and 
the potential flow theory to solution of the problem. 

The analysis was carried out under the following 
assumptions: 

a) The tank is a rigid rectangular structure, without inner 
structural members (Fig 1). 

b) The liquid is nonviscous and incompressible, and fills 
the tank so that l/2b >0.4 (the condition of linear 
motion of the liquid surface during oscillations 2°- 23). 

c) An inertial reference system O X Y Z ,  and a moving one 
Oxyz coupled rigidly to the tank, as shown in Fig 1, are 
adopted. 

d) The motion of the liquid is potential relative to OX Y Z  
and is two-dimensional, occurring in the plane OXZ.  

e) Deformation of the free surface of the liquid from its 
mean position is small. 

f) The surface tension is neglected. 
g) The pressure at the free surface is atmospheric. 
h) The forced motion of the tank is caused by harmonic 

input: 

A =A 0 sin o t  (1) 

where the angular amplitudes A 0 are small and the 
frequencies ~o are not close to the frequency ~o~ of free 
oscillations of the liquid. The acceleration of the tank 

due to this motion is small relative to the acceleration due 
to gravity. 

Free oscillations of the liquid 

The liquid in the tank is a specific oscillating system. 
Therefore its free oscillations ought to be defined prior to 
the analysis of forced oscillations. 

After a preliminary oscillation the tank remains 
immobile with respect to O XY Z .  The assumptions as 
listed above allow solution of the problems on the basis of 
a linearized mathematical model 24. A velocity potential 
function, q~(x, z, t), is sought that would satisfy the Laplace 
equation in the entire volume occupied by the liquid: 

A~0(x, z, t) = 0 (2) 

together with the boundary conditions: 

i) at the tank walls 

~-~= -I/2 (3) 
0 

ii) on the free surface of the liquid 

a2~° kg~--=O (4) 
c3t 2 vz I~=t/2 

This leads to a formula for the frequency of free 

Notat ion 
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T* 
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U 
x, y, z 
Z* 

Thermal diffusivity coefficient 
Angle of inclination of the tank 
Dimension of the tank, Fig 1; factor in Eq (41) 
Function in Eq (37) 
Factor in Eq (17) 
Height of the tank, Fig 1 
Froude number = Aoob/x//~l 
Grashof number = gl3~Ow/V 2 
Gravitational acceleration 
Imaginary part of coQmplex number 
Imaginary unit = x / -  1 
Characteristic dimension; height of liquid in 
the tank 
Nusselt number = 0~//~f 
Pressure 
Prandtl number = v/a 
Real part of complex number 
Reyleigh number = PrGr 
Reynolds number = Aoogbl/v 
Strouhal number = l/(Aob) 
Time 
Temperature 
Tank oscillation period 
Components of velocity within the boundary 
layer 
External flow velocity as defined by Eq (16) 
Linear coordinates 
Position of the tank rotation axis, Fig 1 
Heat transfer coefficient 

A 

6 
8 

0 
2 
Y 

P 
~o 
CO 

Coefficient of volumetric expansion 
Laplacian; boundary layer thickness ratio, 
6T/6 
Boundary layer thickness 
Small parameter as defined by Eq (19) 
Dimensionless coordinate as defined by Eq 
(28) 
Temperature difference 
Thermal conductivity 
Coefficient of kinematic viscosity 
Density 
Velocity potential; phase shift 
Angular frequency of oscillations 

Subscripts and superscripts 

f Liquid 
k Oscillation form 
m Mean value for the length, l 
n Term of a series 
0 Stationary component; amplitude 
r Real part of a complex number 
T Thermal bounday layer 
u Imaginary part of a complex number 
w Wall 

Parameters outside the boundary layer 
1 Pulsatory components 
+ Dimensionless quantities 
( >  Quantities averaged over one oscillation 

period 
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Fig 1 Model of  tank, and the distribution of  the relative 
velocity amplitudes at the vertical wall as related to the 
tangent velocity of  the wall, A0ogb 

oscillations of the liquid for all oscillation forms: 

/ ks  . f k.nl'x 
oh, = X/~-g t la~- -  ) 

(k= 1, 2, 3 . . . .  ) (5) 

The frequency is related to the oscillation period by the 
formula: 

2n Tk* = - -  (6) 
(,O k 

(k = 1, 2, 3 . . . .  ) 

Oscillations on natural convection in ship tanks 
The details of the solution can be found in Ref 25. 

Forced oscillations 
The tank oscillates about an axis of rotation passing 
through the point (0, Z*). Its motion is described by Eq 
(1). The field of absolute velocities of the liquid defined 
with respect to O X Y Z  is sought. If a linear model of the 
phenomenon is assumed and assumptions e) and h) above 
taken into consideration, then the velocity potential 
~o(x, z, t) may be expressed directly in coordinates of the 
moving system Oxyz. 

A velocity potential function c#(x, z, t) is sought 
that satisfies the Laplace equation within the entire 
volume occupied by the liquid: 

Acp(x, z, t)=0 (7) 

together with the boundary conditions 

C~xx x = +b = (Z-- Z*)Aoco cos c~t 

~z : = = xAoo9 cos cot 
- I/2 

Oz~P +o O~-~ =0  (8) 
Ot 2 OZ z=l/2 

Solution of Eq (7) together with conditions (8) by 
the method of Fourier series (for the details, see Ref 25) 
yields: 

( -  1)k-'412 S (2k-  1)~x] 
~°(x 'z ' t )=Ao°aC°S°gt(-Z*x+ X . . . .  ~ - ~ - - - ~ x  

\ k= 1 n3(2k_ i)3 ch[(2k_ i)~_ J 

[ rc4] "~t{ ( -  1)k- 116bz 
x sin (2k-  1 +k / ~ 3 ( 2 k  - 1) 3 X 

hE x(  1)] c (2k-1)~ z-~ (_l)k_18 b 
~ + 2(2k_1) 2 x 

+ ~21 t  sin[ (2k-  1)~bX]) 

l 4b t h I (2k '  1) n / ]  
+ 

2 n(2k-  1) 

(9) 

The relations obtained above: (5), (6) and (9), lead 
to results analogous to those obtained from 
corresponding relations presented in Refs 22 and 26. 

The relative velocity of the liquid with respect to 
the vertical wall of the tank is: 

U = - Aoo3b cos cot - Cq) (10) 
~z Ix=hi 

The amplitude of the velocity U divided by the tangent 
velocity of the vertical wall, Aocob, versus the coordinate z, 
is shown in Fig 1. 
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Sketch illustrating the mathematical model 

The in f luence of  osci l lat ions on 
natural  convect ion  
The solution obta ined  within the f ramework  of the 
theory  of small per turbat ions  

The motion due to natural convection perturbed by a 
forced flow in the form of small harmonic oscillations was 
analysed. The mathematical model of the phenomenon 
was formulated based on the following assumptions. 

• A vertical flat plate situated as shown in Fig 2 is 
considered. 

• The temperature of the plate, T~, and that of the liquid 
outside the boundary layer, T o, is constant, with 
T~>Tw. 

• There is a laminar boundary layer, namely a 
hydraulic layer of thickness 5 and a thermal layer of 
thickness 6T- 

• The liquid is incompressible and its properties do not 
vary; thermal changes of the density allowed for in the 
equation of motion are exceptions. 

• The energy dissipation is neglected. 
• The pressure gradient in the direction Oy equals zero: 

0p' 
=0.  

0y 

• The velocity outside the boundary layer is U=(x, t) 
resulting from the potential motion of the liquid in the 
tank. 

• The oscillatory motion of the tank is taken into 
account only through the velocity U=(x, t). 

The assumptions adopted lead to the following 
equations of conservation: 

0u 0u 0u 1 0p t 02N 

Ou Ov 
0x 4-~yy=0 

00 00 00 020 

(11) 

(12) 

(13) 

together with the boundary conditions: 

y=0 ,  u = v = 0 ,  0=0w 

y ~  o~, u = U~(x, t), 0 =0  (14) 

where 0 = T~o - T. 

In order to complete the set of Eqs (11) to (13) the 
pressure gradient ap'/Ox is determined from the condition 
satisfied at the layer boundary: 

1 Off OU~ OU~ (15) 
p o x -  Ot +U~ 0 ~  

The velocity U as defined by Eqs (10) and (9) has a 
complex analytical form. A formula approximating this 
function has been adopted after a further analysis. In 
terms of Fig 1, and in the coordinate system as shown in 
Fig 2, it has the form: 

U oo(x, t)= Uo(x) cos o~t (16) 

where the amplitude: 

Uo(x)=Aooob 2 + C ,  s h [ ~ b b / - x ) l - C 2  s h ( ~ )  

(17) 

with 

4[9 zf  l Z* + 2b "~] 

c,_ b@2C ) 
16 

C2 = ~2 C3 

el) C3=sh 

01) 
C4=ch 

For a comparison of U o~ Im,* according to Eqs (10) and (16), 
see Fig 1. 

Eqs (11) to (13) together with conditions (14) form 
a complicated set of nonlinear partial differential 
equations. To make its solution possible, the set must be 
linearized. This may be done using the method of small 
parameters 19 under the assumption that the non- 
stationary forced flow, U=, is small compared with the 
stationary flow occurring due to natural convection. 

The external flow may be written as: 

g ~(x, t) = ~ Uo(x) cos ~ot (i 8) 

where ee(0.1) is a small parameter defined as: 

Uo(x) 
- UOimax (19) 

while UOImax is the maximum velocity of the convective 
motion at x = I. i 

It is useful to carry out the calculations for the flow 
U~(x, t) expressed in the complex form: 

U=(x, t) = e U0(x) e '°' (20) 

It should be noted that a physical meaning may be 
assigned only to the real parts of Eq (20) and the solutions. 
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The solutions are sought in the form: 

u(x, y, t) = Uo(X, y) + ~Ul(X, y) e "°' + O(d) 

v(x, y, t) = Vo(X, y) + evl(x, y) e i'°, + 0(e 2) 

O(x, y, t) = 0o(X, y) + eO l(x, y) ei'°t + O(e 2) (21) 

After substituting (21) into Eqs (11), (12), (13) and 
conditions (14), using Eqs (15) and (20), grouping together 
terms of the same order with respect to e and neglecting 
those containing e 2 and higher power of e, one obtains two 
sets of differential equations and boundary conditions. 

1) The first approximation--a set of equations 
describing the stationary heat transfer during natural 
convection---in a dimensionless form is: 

+ c3u~ c3u~ = Gr 02u~ 
Uo ~x + + v~ ~_.. O~ 4 ~y ÷ z ~y 

~u; Ov; 
8x + + O ~  - = 0  

~30; + 00~- 1 020~ - 
ug ~x+ +Vo Oy + =Pr  Oy +2 (22) 

with the boundary conditions 

y ÷ = o, ug = vg = o, og = 1 

y +---, ~ ,  u~" =0,  0~-=0 

2) 

(23) 

The second approximation--a set of equations for the 
nonstationary heat transfer in an oscillatory flow--in 
a dimensionless form is: 

Oui ~ Ou~ 
+ v; ~ + Shi(u~ - - O ; ) + u ;  ~x+ +Ua+ c3x ~ oy 

+v~ Ouff _ Gr O+ 1 c~2u~ 
Oy+ - - ~ e  2 x Re c~y +2 

Ox + t- 0 ~ -  = 0 (24) 

÷ oo? + u ;  eog ÷ oo? oo;  
ShiO; +u o Ox ~ ~x + +v o ~y+ +V;  Oy ÷ =  

1 d20~ 
Re Pr Oy ÷ 2 

together with the boundary conditions 

y+ ~0, 

y+ ~ 00, 

where 
X 
l '  

0 0 -t- -- 
0w 

u ? = ~ : = 0 ,  0 ? = 0  
u? = t~;, 0? =0 

U 0 U 1 
ug --(v/l)' u? =Aoo9 b 

T - T w  t+ = t 
T~o - Tw' (2n/m) 

(25) 

For definitions of the remaining dimensionless 
numbers used in Eqs (22) and (24) see the Notation. 

A solution of Eqs (22) with conditions (23) can be 
found in the literature. However, application of the 
method of balance equations for solution of (24) requires 
that solutions of (22) obtained by the same method be 
available. 

Use of the continuity equation in the equations of 
motion and energy, and integration of Eqs (22) within the 

Oscillations on natural convection in ship tanks 

boundary layer thickness with conditions (23) leads to the 
balance equations: 

0 u~2dy+=Gr  Ogdy+_~y+ y.= ° 
Ox + 

0 ~ + + 1 ~ 0 ~  
c3x-+/oj Uo 0o dy + - ~r #y'i'ly+= 0 

(26) 

velocity and temperature The following forms of the 
profiles are assumed: 

u;~ = v+~(1 _~)3 

0~- = (1 + qTX1 -- qT) 3 (27) 

where 
y+ y+ 

~/=~- ,  tiT = 6+ (28) 

Profiles (27) have been chosen so as to satisfy 
conditions (23) together with: 

c~y + ~ - ~ y ÷ = 5 +  =0  

00o o o;- I 
O-~-iy.=o -- By +--%+=~{=0 
#;ug 

y+=O + Gr=O 
(29) 

1 ~20~" 

For fluids characterized by Pr/> 1, where the ratio 
A =6~/6  ÷ ~< 1, the following solutions are obtained. 

The local Nusselt number: 

1~1 00; qT=0=0~]T 2 1/4) (30) Nu o = 6oAX +~- 

The local thickness of the hydraulic boundary layer: 

6 + =60X+(1/4)--5.897N/(l'8G~- 1) - x +a/4) (31) 

The distribution of the velocity component, u~: 

u~ = ~Grt~x + ~l/z)tl(1 _q)3 (32) 

The relation A = f(Pr) for A ~< 1 assumes the form: 

151.2A(1.8A_l) (1A2 1A3 + 9 A 4  1 AS" ~ 2 

(33) 

The solutions obtained correspond to those 
available in the literature for natural convection at a 
vertical walL 

The velocity given by Eq (32) should be expressed 
in a dimensionless form according to the principle 
adopted in Eqs (24); then it can be used for solving this set 
of equations. The dimensionless form of Eq (32) is: 

+ 1 Gr 62 x U0 = ~  0 +(1/2)q(l--q) 3 (34) 

On integration of the equations of motion and 
energy in set (24) in a manner analogous to that used for 
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(22) we obtain their balance form: 

f '  .+[- 1 0/" +("  + ) ]  Shi u~ d~l -Uo|Shi+~-4-~-[6  | Uo dq + 
o k o CXk do 

2 0 [ ['1 ] Gr /'1 1 Ou~ .=o +U-~-U-/6+/(u~-u[)d. /=~:~_~ / O;dt/ 
k do d tw do 6+2Re Oil 

' 1 0 l -  + / ' t  + U ~ _ 0 ~ . ) d q T ]  = Sh i f oOE d'I~ +~-F---x+ L6T Jo(U¢ O? 
J 

__ 1 1 00~- t/T=0 
6~ z Re Pr OrlT 

(35) 

(36) 

The velocity ahd temperature profiles in the 
boundary layer have been assumed, as in Ref7, to have the 
form: 

u;  = O~ (5t/4 - 4t/s ) + B ( t / -  4q 4 + 3t/s) + 

1 
+ ~  6 +2 Re Sh U~-i(- t /2 + 3 t /4 -  2t/s)+ 

1 
+ ~ 6  +2 Sh Re iB(q 3 - 2q4+ r/S)+ 

3 +2 Gr 
+ 6--ARee Bt( -/ /3 + 2/,/4 _ r /s)  

4 5 1 0i ~ = B 1 [r H - 4//x + 3r/T +~  6 + 2 A 2 Sh Re Pr i x 

x (~3 _ 2,1~" + ~ ) 3  

(37) 

(38) 

chosen so as to ensure that conditions (25) be satisfied 
together with: 

0.;- 
0q rt=l 

ooi ~ 

O~u; 
@2 ~=0 

03u;" 

0q 3 ~=o 

020[ 
0tiT 2 .~=o 

030[ 
Or/3 ,T=0 

= 0  

= 0  

= - 6 + 2 R e S h  Ug i  

0 + 3+2Gr00~ =o 
=6+2ReShi~-q ,= o Re Oq 

= 0  

o+= . . . . .  0o i l  
= oT bn/~e r r  t = - - - I  

@x I,~=o 

(39) 

Substitution of Eqs (37), (38), (34) and (27) into Eqs 
(35) and (36) gives, on integration of these equations, a set 
of ordinary differential equations which are used, in turn, 
for determination of the complex functions B(x +) and 
Bdx  +) as introduced in Eqs (37) and (38). To this end the 
method of generalized series is adopted. 

The local Nusselt number for this approximation 
has the following form: 

1 00~- ,r =0 B t ( x  +)  
NU,x,-  c~ 0t/T - M(x+ ) (40) 

It is a complex number described by 

R(NUlx+) = 

_ 1 ~, bvl.l[Sh Re 62] ('- 1)x+[(2"-3)/4] 
boa ,,= o 

I (Nu , , . )  = 
oo  

_ 1 ~.. b.(.)[Sh Re fig]("- t)x+[(2"-3)/4] (41) 
6oA .= o 

The coefficients b T and b. are given in Ref 27. 
Based on the temperature distribution in Eqs (21), 

the following relation for the local Nusselt number 
describing the heat transfer for the phenemonen under 
consideration is obtained: 

Nu~+,+ =Nuo~ +eR(Nulx- exp i2m+)+O(e 2) (42) 

where the second term can be written: 

eR(Nul..+ exp i2~t + ) = elNuh.+ I COS(2rct + + ~p) 

In Eq (42) the first term is the Nusselt number 
associated with the natural convection as described by Eq 
(30). The second term is a pulsatory component of the 
Nusselt number resulting from flow oscillations. It is given 
by the amplitude ~[Nulx~ I and the phase shift q~ relative to 

~J = CORSt 

Ro = const 

A ° = i 0  o 

16 

12 

I 
0 0 . 2  

Fig 3 Distribution of 
component amplitudes 
amplitudes 

I I I 
0 . 4  0 . 6  0 . 8  

) f ÷  

the Nusselt number pulsatory 
for different tank oscillation 

2O 

~5 

d 

3 / ~ = COnSt 

5 ~ /  RO = const 

I I I I I 
0 2 4 6 8 I0 

A o ,  deg 
Fig 4 Ratio of amplitudes of the pulsatory and stationary 
components of the Nusselt number plotted against the tank 
oscillation amplitude 
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Fig 5 Velocity and temperature profiles in the boundary 
layer for x + = 0.8 

the forced tank motion. This is illustrated in Fig 3, which 
shows the amplitudes s]Nu~+] for different amplitudes of 
the forced motion, plotted against the coordinate x ÷ ; and 
in Fig 4, showing the ratio of the pulsatory component 
amplitude to the stationary component Nuox+. Fig 5 
shows changes of the velocity and the temperature profiles 
in the boundary layer. 

Solution by the averaging method 
The model based on small perturbation theory yielded 
pulsatory components of the velocity and temperature 
developed as a result of oscillations. This section of the 
paper presents an attempt at estimating the effect of 
oscillations on the heat transfer averaged in time. To this 
end, averaged equations of conservation are used. The 
same assumptions as before are adopted with the 
exception that cases are taken into consideration for 
which the motion due to the forced flow of liquid in the 
tank prevails in the boundary layer over the natural 
convection flow. 

The phenomenon is, therefore, described by the set 
of differential equations (11) to (13), and boundary 
conditions (14). In this case solutions are sought in the 
form: 

u(x, y, t) = Uo(X, y) + ul(x, y, t) 

v(x, y, t)= Vo(X, y) + vl(x, y, t) (43) 

O(x, y, t)= Oo(x, y)+ Ol(X, y, t) 

where the subscripts '0' denote the time-averaged values 
of the solutions, and '1' denote the pulsatory components. 
The mean values of the pulsatory components obtained 
for the oscillation period T* are: 

( u l ) = ( v l ) = ( 0 1 ) = O  

Oscillations on natural convection in ship tanks 

Substitution of Eqs (43) into the set (11) to (13) and 
averaging over the period T* gives a set of equations 
defining time-averaged components of the solutions. 
Equations for the pulsatory components are obtained by 
subtraction of the time-averaged equations from the 
complete ones 4A9. 

The set of equations is very complex; therefore, the 
solutions are found in an approximative way. In the first 
approximation a time-averaged velocity component u o 
resulting from natural convection flow, is assumed to be 
independent from a pulsatory component ul due to the 
oscillations U~(x,t). Pulsatory component u 1 can be 
determined from the simplified momentum equation (the 
buoyancy and the convective terms are neglected~9): 

Ou r OU + 2rt 02//; 
- k ( 4 4 )  

Ot + ~t + Sh Re Oy +2 

and the continuity equation: 

0x + +0y+-=0 (45) 

and boundary conditions: 

y+ =0, ui ~ = G  =0 

y+ ~ ~ ,  u~ = U + (46) 

Solution of Eqs (44) and (45) together with 
conditions (46) gives: 

u f =  U~[cos 21tt + - ( e x p - y  +/6+)cos(2rct + -Yf--T) 1 

(47) 

oos  ,+ 
v~ = dx + L - y  + 

~22exp(-y+/6+)cos(2rct+ Y+ 4)] ,48, 
where 

,/2 
l ( S h ~ )  '/2 - i q ~  

may serve as a measure of the thickness of the hydraulic 
boundary layer developing in the oscillatory flow along a 
flat plate (Fig 6). 

For determination of the temperature field the 
following equations are used: 

• for the pulsatory component, 01, 

~301 •0o 001 001 000 
Ot kUl ~x +U°~xx +Ul ~XX -~-UI G-~- 

00~ ul ~ + vx = 
~-UO "~Vl~y - G 

0201 
= a Oy 2 

• for the time-averaged component, 0 o, 

000 000 ( 00,+ 00,) 
"0 ~-X + VO G " F  /.,/l ~ - -  X Vl ~y-y = a - -  

(49) 

0200 
~y2 

(50) 
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Fig 6 Distribution of the relative velocity + + ul/Uo in the 
boundary layer 

The boundary conditions are: 

y=0, 00 =0w, 01 =0 

Y----f T, 00 =0, 0a =0 (51) 

Approximate solution to this set of equations is 
sought. A time-averaged temperature profile is assumed: 

Oo(X, y)= O'o(X, y)+ O'S(x, y) (52) 

where 0~ is the temperature responsible for natural 
convection and is independent from 0~ which describes 
the effect of oscillations. 

Substituting Eq (52) into the energy equation (49) 
allows one to split Eq (49) into two independent 
equations. One of them, after linearization, can be written 
in the dimensionless form: 

1 00; + t30 '+ t30~ + 1 c320~ - 
~,,o + vi~ _ (53) -~ Sh f u  + ux ~x + Oy + Re Pr 8y + 2 

and can be solved for the conditions: 

y+ =0, Of =0 

Y+ =fiT, 0~- =0 (54) 

This yields finally the pulsatory component of the Nusselt 
number: 

N u l -  dO~ + (55) 

The analytical function fa has a considerably complicated 
form 27. 

When the pulsatory temperature component 0~ is 
known then the time-averaged component 0ff may be 
determined from Eq (50). 

Application to Eq (50) of a procedure similar to 
that applied to Eq (49) gives the equation: 

~0~, ~0~, ~0~, 
u° ~xx + v° ~ = a Oy 2 (56) 

while (51) gives the conditions: 

y=0,  0~-__--00w } (57) 
Y = f T '  0~) 

On the strength of assumptions adopted 
previously with regard to u o and v o, the temperature 
distribution 0~ developing in conditions of natural 

convection is just the solution of Eq (56) with conditions 
(57) as assumed in Eq (52). 

The remaining terms of Eq (50), with less 
significant terms omitted, can be written in the 
dimensionless form: 

1 t~20°+ ( +~0~ +00~ / (58) 
R e P r  t;3y + 2 -  Ul OX ~ + v l  Oy --7-  

with boundary conditions: 

y+ =0, 0~ + =0~ 
y+ =6 T, 0; + =0J (59) 

The final solution to Eq (58) together with 
conditions (59) gives the stationary increase of the Nusselt 
number due to oscillations: 

Nu~'x. - ~y +-r+=o=f2(Sh, Re, Pr, x +) (60) 

The analytical function f2 of complex form can be found 
in Ref 27. 

For the approximations as specified above the 
Nusselt number characterizing the heat transfer under 
consideration is given by the expression: 

Nux+ ,+ =Nu'ox+ + Nu~x. + Sutx+,r (61) 

The respective terms of formula (61) are given by 
Eqs (30), (60) and (55). 

Fig 7 shows the stationary increase of the Nusselt 
number Nu'~ and the amplitude of the pulsatory 
component [Nuxl plotted against the coordinate x +. 

Experimental verification of the model 

The model, as presented in this paper, of mixed 
convection in a tank refers to laminar flow of liquid in the 
boundary layer. Results of experimental research1 carried 
out in connection with laminar flow provide the best 
material for verification of the model. Our theoretical 
model has been formulated for small perturbations. It 
covers, therefore, only the lower region of the range 
investigated in Ref 1, which was specified to comply with 
shipbuilding needs. Table 1 shows a comparison of two 
results obtained for water and oil (runs No 1 and No 2 
respectively). 

--_ I 2 ~ INujl 

eO 

4 

O 0 . 2  0 .4  0 .6  0 . 8  

x*  

Fig 7 Stationary increase Nu~ and the amplitude of the 
pulsatory component INull plotted aoainst the coordinate 
X + 
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In Table 1, ANu m is the mean increase of the 
Nusselt number Nu averaged in time and along the wall, 
over the number Nuom describing natural convection as 
obtained in investigationsL Nu'o'm is the same quantity as 
ANum, calculated by the method of averaging. The 
amplitudes of the pulsatory component Nulm calculated 
from the theory of small perturbations (model 1) and 
according to the method of averaging (model 2) are given 
in Table 2. It is evident that stationary increases of the 
Nusselt number obtained in the two ways are close to each 
other. This is not the case with values of amplitudes of the 
Nusselt number pulsatory components, as differences 
between results obtained based on the two theories can be 
as large as 25%. 

To obtain data for turbulent heat transfer in the 
presence of oscillations, experiments were carried out by 
the authors 3. To this end, a model tank of dimensions 
0.5 m x 0.4 m x 0.3 m (e x 2b x length as in Fig 1) made of 
organic glass plate 8 mm thick was used. The tank was in 
harmonic motion at amplitudes A0=0  ° to 10 ° and 
periods T*=0 .8  s to 3.6s about two axes of rotation 
located 0.19m and 0.31 m above the bottom. A hydraulic 
driving installation was used. Distilled water and spindle 
oil (V50oc---7.2 x 10 - 6  m2/s) were used for modelling the 
actual cargo. The measurements were carried out for two 
liquid heights: LI =0.32 m and L2=0.2 m. The heating 
system, comprising an electric heater rated 2000 W at 
220V, situated about 25mm above the bottom, an 
autotransformer and a wattmeter, ensured the required 

T a b l e  1 C o m p a r i s o n  o f  N u s s e l t  n u m b e r  
s t e a d y  i n c r e a s e  b e t w e e n  t h e  e x p e r i m e n t a l  
r e s u l t s  o f  R e f  1 a n d  t h e  t h e o r y  d e v e l o p e d  in 
t h i s  p a p e r  

Run Nuom Experiment Theory 
No ANu m Nd~m 

1 14.54 0.672 0.677 
2 18.92 0.258 0.255 

2 

Oscillations on natural convection in ship tanks 

thermal state of the liquid in the tank. The measurements 
were made for steady state thermal conditions and the 
turbulent character of heat transfer was maintained. The 
temperatures were measured with six sets of 
thermocouples situated along the vertical wall and the 
bottom of the tank. Each set consisted of three 
thermocouples, two of them mounted in the wall, on the 
inside and outside surfaces, and the third in the liquid 
relatively far from the wall. 

The programme of investigations comprised: 

• the examination of heat transfer in the absence of 
oscillations (ie free convection) to check the accuracy 
of the measuring technique and to obtain the 
reference data for further results (in the presence of 
oscillations); 

• the examination of heat transfer in the presence of 
oscillations for various sets of the parameters. 

About one hundred different cases were measured. 
From an analysis of the experimental results (see 

Fig 8 for vertical wall) the natural and forced convection 
predominance regions were determined and the best 
correlation formulae were found. Figs 9, 10 and 11 show 
the experimental curves obtained for each region. The 
phenomenon was tested in the following ranges of 
dimensionless numbers: 

7 x 10 ~ <<.Ra<~ 3 x 10 9 

2.7 ~< Pr ~< 249 

3.2 x 10 2 <<.Re<<.6 x l04 

5.7~<Sh~<36.7 

1.1 x 10-2 ~<Fr~<6.5 x 10 -2 

The theoretical model described in this paper can 
not be used directly for analysis of turbulent heat transfer. 
It allows one, however, to carry out a simplified 
quantitative analysis of such cases. This is possible on the 
assumption that the total thermal resistance is 
concentrated in the laminar sublayer. This makes possible 
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0 9 0 9 Oi l  L = 0 . 3 1 m ,  Z ~= O.15m 

13 Oil / = 0 . 2 m ,  Z t l -  O .21m 

R e g i o n  A ~- -: Region B ~.~ Reg ion  C 
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Fig 8 The generalized correlation for mixed convection at the vertical tank walL" .4, the region of predominant forced 
convection for Gr/(ReZPrX/3)<O.l; B, the region of mixed convection for 0.1 <~ Gr/(Re2prl/3)<~0.4, C, the region of 
predominant natural convection for Gr/(Re 2 Prl/a) > 0.4 
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Heat transfer at the vertical wall in the region B described by: Nut. = 2.88 x 10-2 ReO.5 prU3 Ra o. 15 Fr o. 15 Sh o. 1 

T a b l e  2 C o m p a r i s o n  o f  v a l u e s  o f  t h e  
p u l s a t o r y  c o m p o n e n t  Nulm b e t w e e n  
t h e o r e t i c a l  m o d e l s  1 a n d  2 

results see Table 3. A comparison of the Nusselt number 
N u  m obtained by the averaging method and found 
experimentally gives fairly good agreement. 

Run No Model 1 Model 2 

1 1.481 1.334 
2 0.528 0.659 

estimation of its mean thickness: 

~ & _ ~ . ,  _ ,~f _ 1 

1 0tml N u  m 

where Nu,, is the mean value of the Nusselt number 
determined in the investigations above. Such an analysis 
was possible for only a few measuring points as 
parameters of the forced tank matron since the rest of 
them did not satisfy the assumptions of the theory. For the 

D i s c u s s i o n  a n d  c o n c l u s i o n s  

This paper concerns theoretical and experimental 
investigations of the complex phenomenon of heat 
transfer between a liquid and the walls of a tank subject to 
harmonic oscillations. The characteristic of the oscillatory 
flow of liquid in the tank has been determined on the basis 
of the theory of potential flow. Two theoretical models of 
the heat transfer under consideration were developed and 
solved approximately. Due to the complex nature of the 
mathematical models, and difficulties associated with 
their solution, only the cases of small perturbations and 
laminar flow in the boundary layer were taken into 
consideration. It would be very difficult to extend the 
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T a b l e  3 C o m p a r i s o n  o f  va lues  o f  N u s s e l t  n u m b e r  o b t a i n e d  f r o m  t h e  a u t h o r s '  e x p e r i m e n t s  and 
f r o m  t h e  t h e o r y  

Run no. Gr Nuor n Experiment Theory 
Re2 prl/3 Num = Nuom+ ANum Num = Nuom + Nu'~m 

1 3.081 161.7 157.8 162.1 
2 0.398 117.9 119.6 120.6 
3 0.099 104.9 115.2 108.7 

theory to cover the case of large perturbations. So far no 
such theory is available. 

Turbulent flow in the boundary layer can be 
analysed using the laminar models under the assumption 
that in turbulent flow only the laminar sublayer is 
responsible for the heat transfer mechanism. 

The theories developed represent different 
approaches to the problem of oscillations in the boundary 
layer. In the first theory it is assumed that the flow 
occurring as a result of natural convection is the basic 
motion onto which oscillations are superimposed. In the 
second theory it is assumed that the predominant motion 
in the layer is that forced by the external flow. Besides, the 
temperature field corresponding to the case of natural 
convection is assumed for the initial iteration. Both 
theories provide good results in the case of small 
perturbations. However, each of them satisfies different 
needs of the user. From the first theory, amplitudes of the 
Nusselt number pulsatory component, velocities and 
temperatures as well as their phase shifts relative to the 
external inputs (useful in some applications) can be 
obtained. This allows one to complement, in a sense, 
experimental investigations by addition of velocity and 
temperature time courses, which are very difficult to 
measure and were not investigated in Refs 1 and 3. The 
other theoretical model is aimed mainly at determining 
time-averaged changes of the Nusselt number caused by 

oscillations. Amplitudes of the pulsations are less 
important. The discrepancies between amplitudes of 
pulsatory components, as shown in Table 2, result from 
different approximations characteristic to each theory. 
The qualitative character of changes along the wall is, 
however, the same; this is evident from Figs 3 and 7. 

It was noticed that the dimensionless group 
Gr/(Re 2 Pr 1/3) may be regarded as the principal criterion 
applicable for investigations of mixed convection. Its 
decrease corresponds to increasing participation of forced 
cc]nvection in this process (see Fig 8), which results in a rise 
of the stationary increase Nu~, thus demonstrating the 
validity of the theory (see Table 3). 

The theories have been developed for one direction 
of the heat transfer, ie for flow of heat to the outside. A 
slight modification allows one to analyse also the case of 
heat input through the wall into the tank. The pattern of 
heat transfer is different in both cases, due to the nature of 
forced flow at the boundary layer border. 

The theoretical models presented here, although 
they provide insight into the mechanism of mixed 
convection, are limited in their scope for practical 
applications to cases such as ship tanks. They cover only 
the narrow range of parameters met in these cases. 
Therefore, for design purposes, the experimental results of 
Ref 1 for laminar flow, and of the present paper for 
turbulent flow, can be applied. 

Int. J. Heat S~ Fluid Flow 59 



S. Doerffer and J. Mikielewicz 

References 
1. Kato H. Effects of rolling on the heat transfer from cargo oil of 

tankers. J. Soc. Naval Arch. Jap., 1969, 126, 421-430 

2. Suhara J. Studies of heat transfer on tank heating of tankers. Jap. 
Shipp. a. Shipbuilding, 1970, 5(1), 5-16 

3. Doerffer S. Results of Experimental Investigations of Heat 
Transfer in a Tank Subjected to Harmonic Oscillations. IF-FM 
Reports, 110/1007/81, 1981 (in Polish) 

4. Galiciejski V. M. Tieplowye i Gidrodinamiceskie Procesy w 
Kolebajuscichsja Patokach. Masinostroenie, Moscow, 1977 

5. Martynenko C. G. Tieploobmien Smiesannoj Konwekciej. Nauka i 
Technika, Minsk, 1975 

6. Lighthill M. J. The response of laminar skin friction and heat 
transfer to fluctuations in the stream velocity. Proc. Roy. Soc., 
Series A, 1954, 224, 1-23 

7. Eshghy S,  Arpaci V. S. and Clark J. A. The effect of longitudinal 
oscillations on free convection from vertical surfaces. J. Appl. 
Mech., March 1965, 183-191 

8. Schoenhals R. J. and Clark J. A. Laminar free convection 
boundary layer perturbations due to transverse wall vibration. J. 
Heat Transfer, August 1962, 225-234 

9. Blankenship V. D. and Clark J. A. Effects of oscillation on free 
convection from a vertical finite plate. J. Heat Transfer, May 
1964, 149-158 

10. Nanda R. S. and Sharma V. P. Free convection laminar boundary 
layers in oscillatory flow. J. Fluid Mech., 1963, 15(3), 419-428 

11. Stuart J. T. A solution of the Navier-Stokes and energy 
equations illustrating the response of skin friction and 
temperature of an infinite plate thermometer to fluctuations in 
the stream. Proc. Roy. Soc. Series A, 1955, 231, 116-130 

12. lshigaki H. The effect of oscillation on flat plate heat transfer. J. 
Fluid Mech., 1971, 47(3), 537-546 

13. Akagi S. Heat transfer in oil tanks of ship. Jap. Shipbuild. a. Mar. 
Eng., 1969, 4(2), 26-35 

14. Van der Heeden D. J. Experimental evaluation of heat transfer in 

a dry-cargo ship's tank, using thermal oil as a heat transfer 
medium. Int. Shipbuild. Prog., 1969, 16, 27-37 

15. Suhara J. Studies of heat transfer on tank heating of tankers. Jap. 
Shipbuild. a. Mar. Eng., 1970, 5(I), 5-16 

16. Saunders R. J. Heat losses from oil-tanker cargoes. Trans. Inst. 
Marine Engnrs, 1967, 79(12), 405~114 

17. Abrahamsen E. Tank Size and Dynamic Loads on Bulk-Heads in 
Tankers. Det Norske Veritas, Publication No 28, 1962 

18. Hunter, M,  Dul~is M. and Planeix J. M. Model studies on the 
movement of liquid in tanks. Marine Engnrs. Rev., January 1973, 
25-28 

19. Sehlichting H. Boundary Layer Theory. McGraw-Hill Book 
Company, New York, 1968 

20. Blixell A. Calculation of Wall Pressures in a Smooth Rectangular 
Tank due to Movement of Liquids. Lloyd's Register of Shipping, 
1972, Report No 5108 

21. Morris W. D. and Allen R. F. Pressures in a tank due to sloshing. 
Shipp. World a. Shipbuild., February 1974, 215-217 

22. Hagiwara K. and Yamamutu Y. A theory of sloshing in cargo oil 
tanks. J. Soc. Naval Arch. Jap., 1962, 112, 143-152 

23. Faltinsen O. M. Olsen H. A~ Abramson H. N. and Bass R. L. 
Liquid Slosh in LNG Carriers. Det Norske Veritas, 1974, 
Publication No 85 

24. Moisjejew N. N. and Pietrow A. A. Cislennye Metody Rasceta 
Sobstwiennych Castot Kolebanji Organicennogo Obema Zidkosti. 
Vicislitielnyj Centr. A.N. SSSR, Moscow, 1966 

25. Doerffer S. Theoretical investigations of the behaviour of liquid in 
a ship's tank subjected to harmonic oscillations. IF-FM Report, 
66/941/79, 1979 (in Polish) 

26. Searsi C. and Brizzulara E. On the behaviour of liquid in a 
rectangular tank. Int. Shipbuild. Prog., 1970, 17(194), 316-329 

27. Duerffer S. The Problem of the Liquid Medium Oscillation 
Influence on Convective Heat Transfer as Applied to Ships" Tanks 
Carrying High Viscosity Liquids. Ph.D. Thesis, 1983, 
Thermodynamics and Heat Transfer Dept., Institute of Fluid Flow 
Machinery, P.A.Sci., Gdansk (in Polish) 

60 Vol 7, No 1, March 1986 


